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Abstract— The risk analysis for the Europa Clipper mission 
evaluates the probability of mission failure based on the failure 
rates of individual components and dependencies among them.  
The probabilities are calculated by integrating over the intervals 
of time within which a fault occurs, accounting for an infinite 
number of cases.  The response of the spacecraft to different 
faults can result in different schedules of activities, changing the 
intervals of integration. Europa currently uses models of 
spacecraft systems and components to simulate individual flight 
scenarios. The goal is to develop a framework for integrating, 
automating, and improving this modeling process. 

We describe an approach to generating the schedules for the 
different fault cases and determining the intervals for faults.  It 
is not enough to just simulate individual cases because we are 
working with continuous variables that generate an infinite 
number of possible futures. Instead, we determine time windows 
within which certain faults can occur and use these time 
windows as bounds for integration.  We found that determining 
these time windows is a constraint optimization problem.  

In order to represent these problems, we employ a language 
based on ontologies of behavior and scenarios.  The language 
enables us to specify constraints in a simple, declarative syntax.  
A constraint-based analysis engine uses the declarative 
specification to identify bounds on system parameters and fill in 
details of behavior. 

For example, we created a detailed model of power generation, 
power use, and the corresponding effects on the battery in order 
to determine when an undervoltage fault can occur.  An 
undervoltage during a trajectory correction maneuver requires 
that thrusting be interrupted for just enough time to recharge 
the battery such that the maneuver can be completed within 
battery limits.  This behavior is generated based on the model to 
minimize the interruption time. 

For certain scenarios the constraint optimization problems were 
simple enough to be solved by hand, but the framework made 
the process substantially faster. It also produced solutions to 
other problems that we could not solve by hand or with existing 
tools and allowed us to generate and run many scenarios at once. 
The scenario language and engine greatly simplified the process 
of identifying time bounds and separating cases. 
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1. INTRODUCTION 

The Probabilistic Risk Analysis (PRA) for the Europa 
Clipper mission evaluates the probability of mission failure 
based on the failure rates of individual components and their 
relationships. PRAs for space missions often assess risk with 
abstract mathematical models of faults and closed-form 
formulas, with which probabilities can be calculated 
[1][4][5]. Such formulas can often be computed very quickly, 
which allows for easy validation of results and identification 
of problems in the model, but developing these formulas 
becomes more challenging as increasing detail about faults 
and responses is incorporated.  One approach to handle this 
complexity is to model the functional relationships among 
components and subsequently generate the closed-form 
formula from that model [12], which we refer to as Model-
Based PRA (MBPRA).  This approach calculates the 
probability that the spacecraft is reliable as a function of time, 
but relies on a nominal schedule and assumes that swapping 
to redundant components takes insignificant time and that 
recovery can be assessed based on relatively simple 
deviations from the nominal schedule (see [9] for an example 
of this approach). 

Analysis of the Europa Clipper Jupiter Orbit Insertion (JOI) 
sub-phase, in which the spacecraft executes a maneuver to 
enter Jupiter's orbit, is complicated by the fact that some 
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faults cause significant changes to the JOI schedule. During 
JOI, thruster failures can cause delays which increase the 
amount of ∆v the spacecraft must achieve to complete JOI, 
extending the burn duration. It is possible that such a delay 
would exhaust the battery, requiring the spacecraft to stop 
burning long enough to recharge, before continuing the 
maneuver.  Such major changes to the nominal schedule are 
not readily captured by a single closed-form formula, nor by 
traditional MBPRA techniques. Furthermore, exhaustive 
simulation is impossible, since thruster faults can occur at any 
time during the burn(s), effectively generating an infinite 
number of possible timelines, and non-exhaustive simulation 
of multi-component systems is difficult to do accurately [11]. 

We capture this behavior by grouping possible futures such 
that faults occur in well-defined time windows, over which 
the probability of thruster faults can be integrated.  
Determining these time windows can be framed as a 
constraint optimization problem, which we model using a 
concise, declarative constraint language. 

Furthermore, we describe a way to integrate this framework 
with existing Model-Based Systems Engineering (MBSE) 
tooling, including a web-based interface for diagrammatic 
modeling and a textual modeling language that share a 
common behavior-based ontology [8]. This moves towards 
the Single-Source-of-Truth paradigm, intended to reduce 
inconsistencies between models, and to clarify 
communication between parties working on different aspects 

of the mission [2]. This integration allows for several 
different analyses, including those on planetary protection 
[1], power management [10], and science sensitivity [9], to 
share a common model of the mission and remain in 
agreement with design requirements as design details evolve. 

2. RISK MODELING CHALLENGE  
Since MBPRA relies on the output of a simulation of nominal 
spacecraft behavior to determine when components are 
active, it cannot directly represent fault recoveries that 
change the behavior of the spacecraft over a long period of 
time.  For Europa Clipper JOI, faults in the propulsion 
subsystem could result in degraded behavior, and, if the total 
thrust goal is not completed within a particular time frame, 
then the mission could fail.  Furthermore, multiple successive 
thruster faults could occur, each increasing the degradation of 
spacecraft behavior, possibly by different levels.  

The timing and succession of faults do not fit the MBPRA 
model in two ways.  First, the spacecraft’s dependence on the 
timing and level of degradation cannot be captured.  Second, 
a longer duration of thrust could result in depletion of the 
battery, triggering an interruption in thrust to recharge.  This 
alternative course of events violates MBPRA’s assumption of 
a nominal schedule. 

Thus, the propulsion subsystem is treated as a special case.  
To incorporate its behavior into the calculation, reliability is 

 
Figure 1: Event tree for JOI. Scenarios 1-4 and 6-8 represent scenarios where mission success is still possible. Scenario 
1 is nominal and the rest are off-nominal. The probability of mission failure is calculated as (1-P) where P is the total 
probability of one of Scenarios 1-4 or 6-8 occurring. Modeling Scenarios 6-8 is analogous to Scenarios 2-4, just with a 
different start time. 
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integrated over all possible sequences of faults.  For example, 
suppose that there are three successive faults, each resulting 
in further degraded thrust capability.  If the timing of the 
second and third faults depend on the times of the first and 
second, respectively, then the reliability is calculated with 
three nested integrals.  A deadline, 𝑇, for the thrust to 
complete can bound the times of the faults.  Now if the thrust 
goal is achieved (requiring 6.5 hours) before the first fault 
occurs then the faults do not matter.  So, the upper bound of 
the first integral is 6.5 hours.  If there is a fault at time, 𝑥, 
within 6.5 hours, the thrust becomes degraded and drawn out 
over a longer period.  So, the completion time if no second 
fault occurs is a function, 𝑆$(6.5 − 𝑥), the remaining time to 
reach 6.5 after the first fault multiplied by a slowdown factor 
of 𝑆$.  This is the upper bound of the integral for the second 
fault.  Similarly, if there is a second fault before the 
completion, and the slowdown factor increases to 𝑆,, then the 
completion time is 𝑆, -6.5 − 𝑥 −

$
./
𝑦1, the upper bound of 

the third integral.  Thus, the nested integral for calculating 
reliability over the period of the thrust based on some 
function,  𝑟(𝑥, 𝑦, 𝑧, 𝑇), is 

4 4 4 𝑟(𝑥, 𝑦, 𝑧,  𝑇) 𝑑𝑧 𝑑𝑦 𝑑𝑥
.7-8.9:;:

$
./
<1

<

./(8.9:;)

;

8.9

=
(1) 

The next section shows that in our case, the calculation of 
these bounds for different scenarios is actually more 
complicated. 

The integration over fault times is the strategy for capturing 
the more complicated fault behavior in closed-form, but 
𝑟(𝑥, 𝑦, 𝑧, 𝑇) is complex, and it is unclear how to obtain its 
closed-form.   𝑟(𝑥, 𝑦, 𝑧, 𝑇) is based on the MBPRA model, 
and a reliability formula is generated based on a nominal 
simulation.  However, that simulation depends on 𝑥, 𝑦, and 
𝑧, and can vary dramaticallyif the battery is depleted.  Thus, 
the reliability formula output of MBPRA must account for an 
infinite set of these simulations, which it cannot.  And even 
if it could, the formula may be very large to capture different 
combinations of behaviors.  In the actual implementation, an 
abstraction of the behavior is used to avoid this problem.  But, 
it is an open problem for which we do not have a general 
strategy.  

3. JOI THRUSTER FAULT RECOVERY MODEL 
In this section, we describe how we incorporate the 
possibility of thruster faults into a model of JOI completion. 
This model is used later to compute bounds for the integrals 
described in Section 2.  Note that the model is hypothetical 
and is unlikely to reflect the actual fault behavior of Europa 
Clipper. 

There are nine scenarios explored for JOI as shown in Figure 
1.  We focused on modeling the first four scenarios since 
successfully modeling these gives us the foundational 
capabilities to model the rest of the scenarios as well.  
Scenarios 6 – 9 involve a delay in the burn start that we do 
not include in this model but discuss in Section 5.  

Scenario 1 represents a nominal JOI, defined as completing 
the 900 m/s burn between 6.5 and 7.5 hours. In Scenario 2, 
the spacecraft fails to complete JOI within 7.5 hours due to 
some delay but completes it in less than 13.4 hours. If the 
delay takes the spacecraft past 13.4 hours, the spacecraft will 
need to burn for some additional Δv to complete JOI. The 
amount of additional Δv necessary is a function of the 
amount of delay and the amount of the burn already 
completed and is modeled as a piecewise linear function. If 
the amount of additional Δv necessary is less than 50 m/s, 
then the spacecraft is in Scenario 3. Otherwise, the spacecraft 
is in Scenario 4. These scenario definitions are summarized 
in Table 1.  

With no thruster losses, the spacecraft would complete the 
entire burn on 8 thrusters. When the spacecraft experiences 
thruster faults, it does so in pairs to maintain thrust symmetry. 
We identify six additional cases to model: starting nominally, 
with 8 thrusters, then experiencing a fault in one pair (8 to 6); 
Starting with eight, and experiencing faults in two pairs 
sequentially (8 to 6 to 4); Starting sub-nominally, with 6, but 
experiencing no faults (6); Starting with 6 and experiencing 
one fault (6 to 4); and starting with only 4, but experiencing 
no faults (4). This gives us a total of seven cases for each of 
the four scenarios. 

Table 1: Summary of constraints for Scenarios 1-4 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

JOI Completion Time 
(hours) 

6.5 ≤ 𝑡 ≤ 7.5 7.5 ≤ 𝑡 ≤ 13.4 𝑡 > 13.4 𝑡 > 13.4 

Additional 𝜟𝒗 (m/s) 𝛥𝑣 = 0 𝛥𝑣 = 0 0 < 𝛥𝑣 < 50 𝛥𝑣 > 50 
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Let 𝛥𝑣LMNOLPQ  be a constant equal to the amount of 𝛥𝑣 
(change in velocity) necessary to complete a nominal burn. 
Define 𝑡R  as the amount of time spent burning on 𝑘 thrusters. 
Define 𝑡R

($) as the amount of time spent burning using k 
thrusters during the first burn (before any delay). Define 
𝑡TUQP<  as the amount of time between the two burns and C as 
the percentage of the nominal burn, ignoring any additional 
Δ𝑣 requirement, completed before the delay. Define Δ𝑣PTT  

as the amount of additional Δ𝑣 added to correct for the delay. 
We evaluate burn completion based on thruster-hours, where 
1 thruster-hour is defined as the progress on a burn made by 
burning on one thruster for one hour. A complete nominal 
burn, not including any additional burn necessary for the 
additional Δ𝑣, is defined as 𝜏LMNOLPQ  thruster-hours, where 
𝜏LMNOLPQ  is constant. Defining 𝜏PTT  to be the additional 
thruster hours required because of the additional Δ𝑣, we have 
the following constraints: 

𝜏PTT =
Δ𝑣PTT ∗ 𝜏LMNOLPQ

Δ𝑣LMNOLPQ
(2) 

8𝑡[ + 6𝑡8 + 4𝑡] = 𝜏LMNOLPQ + 𝜏PTT (3) 

Similarly, we also have that 

𝐶 =
𝑡[
($) + 𝑡8

($) + 𝑡]
($)

𝜏LMNOLPQ
(4) 

For simplicity, we assume that the rate at which the battery 
discharges and recharges is constant throughout this scenario, 
regardless of the number of thrusters burning or the angle of 
the spacecraft relative to the sun. A much larger model (not 
discussed here) is used to determine more precisely how 
power and battery state change over time.  For this more 
abstract model, this means that the time at which the 
spacecraft undervolts is constant, 𝑇_LTU`aMQb. Using 
𝑇_LTU`aMQb, we can get expressions for the 𝑡R

($): 

𝑡[
($) = min(𝑡[, 𝑇_LTU`aMQb) (5) 

𝑡8
($) = minf𝑡8, 𝑇_LTU`aMQb − 𝑡[

($)g (6) 

𝑡]
($) = minf𝑡],𝑇_LTU`aMQb − 𝑡[

($) − 𝑡8
($)g (7) 

 

The delay should be just long enough so that the spacecraft 
can complete the second burn. Because the discharge and 
recharge rates are constant, the length of delay is directly 
proportional to the length of burn: 

𝑡TUQP< = Rf𝑇_LTU`aMQb − (𝑡[ + 𝑡8 + 𝑡])g (8) 

where R is some constant. 

We model ∆𝑣PTT  as follows: 

𝑡TUQP< = Rf𝑇_LTU`aMQb − (𝑡[ + 𝑡8 + 𝑡])g (8) 

where 𝑚 is based on 𝑡TUQP<: we have constants 𝑚$, . . . ,𝑚]  

and 𝑇$, . . . , 𝑇]  such that 𝑇$ ≤ 𝑡TUQP< ≤ 𝑇], 𝑚O ≤ 𝑚k   and 𝑇O <
𝑇k   for 𝑖, 𝑗 ∈ {1, . . . ,4}, 𝑖 < 𝑗, and that 𝑚 is linearly 
interpolated between the 𝑚R  for 𝑡TUQP< ∉ {1, . . .4}. The 
objective in this example is find the minimize the amount of 
time spent burning on eight thrusters such that 0 < ∆𝑣PTT <
𝐷, where 𝐷 is some constant. 

The elements of the model described so far are common 
across all the scenarios; specific models for each can be 
created by adding the additional constraints from Table 1 to 
restrict the model to a particular scenario. 

// objective 
var min_t8 : Real = minimize("t8") 
 
// constants: assume these are given some value 
var nominalDeltaV : Real  
var tau_nominal : Real  
var C : Real  
var T_undervolt : Real  
var R : Real  
var D : Real 
// declarations for m1...m4 and T1...T4 omitted 
for brevity 
 
// declare non-constant variables  
var t8 : Real  
var t6 : Real  
var t4 : Real  
var t8_1 : Real 
var t6_1 : Real  
var t4_1 : Real  
var t_delay : Real  
var deltaVAdded: Real  
var tau_add : Real  
var m : Real 
 
// keep values positive  
req t8 >= 0  
req t6 >= 0  
req t4 >= 0 
 
// model the constraints  
req tau_add = deltaVAdded * 
              tau_nominal / nominalDeltaV 
req 8*t8 + 6*t6 + 4*t4 = tau_nominal + tau_add 
req C = (t8_1 + t6_1 + t4_1) / tau_nominal 
req t8_1 = min(ta, T_undervolt)  
req t6_1 = min(tb, T_undervolt, t8_1) 
req t4_1 = min(tc, T_undervolt, t8_1, t4_1) 
req t_delay = R*(T_undervolt - (t8 + t6 + t4))  
req deltaVAdded = m(1 - C)  
req deltaVAdded > 0 && deltaVAdded < D 
 
// interpolation  
req m =  
  if t_delay >= T1 && t_delay < T2 
  then m1 + (t_delay - T1)*(m2 - m1) / 
            (T2 - T1)  
  else  
    if t_delay >= T2 && t_delay < T3 
    then m2 + (t_delay - T2)*(m3 - m2) / 
              (T3 - T2)  
    else m3 + (t_delay - T3)*(m4 - m3) /  
              (T4 - T3) 

 
Figure 2: An example model of our optimization problem 
written in K. 
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4. SOLVING FRAMEWORK  
To generate the closed-form formula for the reliability of the 
spacecraft during JOI, we separate the JOI sub-phase into 
mutually exclusive scenarios with specific sequences of 
faults. We have expressions for risk in terms of the amount 
of time spent on a certain number of thrusters, which we 
integrate over the time bounds within which a certain 
scenario can occur [3][4]. The limits on these integrals are the 
maximum and minimum amounts of time the spacecraft can 
spend on a particular number of thrusters while still satisfying 
the constraints of a given scenario. This means that we can 
frame this problem as an optimization problem where we 
iteratively maximize and minimize the amount of time spent 
on 8 thrusters, 6 thrusters, and 4 thrusters for each scenario 
and thruster case. In total, we have six objectives, seven 
thruster cases, and four scenarios, for a total of 168 individual 
optimization problems to solve. 

                                                
1 K and BAE are available at https://github.com/Open-MBEE/kservices. 

We used the K language paired with the Behavioral Analysis 
Engine (BAE) to model and solve the optimization problems1. 
The K language is a declarative language for describing 
variables and constraints on the values of those variables 
(Havelund, et al. 2016). The K language is linked into BAE, 
a constraint-based solving engine that can take these 
constraints and find a point solution that satisfies the 
constraints, if such a solution exists, and optimize for 
minimum or maximum value of a variable.  It does not 
guarantee completeness and optimality in general, but it does 
for our particular set of problems. 

To iteratively run the optimization problems, we wrapped the 
K and BAE solver system with code that generates the K 
models on the fly based on an existing SysML model, adding 
the corresponding constraints to a set of base constraints that 
describe the physics independent of the specific scenario.  

Additionally, we have tooling to generate descriptions in K 
of models described using an ontology of behavior shared by 
other modeling tools, including BeCoS, an online 
diagrammatic modeling tool [8]. This shared ontology makes 
mechanical translation between diagrammatic and textual 
representations efficient and accurate. Furthermore, the 
linkage between this ontology and the K/BAE analysis 
framework helps reduce miscommunication between design 
engineers and risk analysis team members. 

Case Constraints 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒 

8 thrusters 
throughout 

𝛥𝑡[ > 0𝛥𝑡8
= 0𝛥𝑡] = 0 

No solution   

Switch from 8 to 
6 thrusters 

𝛥𝑡[ > 0𝛥𝑡8
> 0𝛥𝑡] = 0 

0.62 < 𝛥𝑡[ < 3.5 4.0 < 𝛥𝑡8 < 7.84 0.0 

Switch from 8 to 
6 to 4 thrusters 

𝛥𝑡[ > 0𝛥𝑡8
> 0𝛥𝑡] > 0 

0.62 < 𝛥𝑡[ < 5.5 0.0 < 𝛥𝑡8 < 7.84 0.0 < 𝛥𝑡] < 3.92 

Switch from 8 to 
4 thrusters 

𝛥𝑡[ > 0𝛥𝑡8
= 0𝛥𝑡] > 0 

4.54 < 𝛥𝑡[ < 5.5 0.0 2.0 < 𝛥𝑡] < 3.92 

6 thrusters 
throughout 

𝛥𝑡[ = 0𝛥𝑡8
> 0𝛥𝑡] = 0 

No solution   

Switch from 6 to 
4 thrusters 

𝛥𝑡[ = 0𝛥𝑡8
> 0𝛥𝑡] > 0 

No solution   

4 thrusters 
throughout 

𝛥𝑡[ = 0𝛥𝑡8
= 0𝛥𝑡] > 0 

No solution   

 

Table 2: Bounds on the amount of time spent burning on a certain number of thrusters for Scenario 2. 
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5. RESULTS AND ANALYSIS 
Table 2 shows the time bounds calculated by BAE for the K 
models for Scenario 2. “No solution” for a certain case means 
that there are no times that the thrusters can fault in the way 
the case describes and still be within the scenario. For this 
example, this means that to be in Scenario 2, the spacecraft 
must spend at least some time (0.62 hours) burning on 8 
thrusters, but not too much (5.5 hours maximum).  

For Scenarios 1 and 2, the optimization problems are simple 
enough that we are able to validate those results against hand 
calculations (see Appendix A).  

We found that using the K/BAE framework provided a 
number of important advantages compared to other 
approaches. First, because of K’s simple and expressive 
syntax, our models were easy to write and especially easy to 
generate. At some point, we attempted to feed the 
optimization problems into established linear or quadratic 
programming solvers, but they all resulted in large, difficult-
to-read, and unintuitive models. The K language, on the other 
hand, supports syntax like “if then else” for conditional 
statements as well as some convenient built-in types, 
allowing us to substantially reduce model size and 
complexity. Figure 2 and Figure 3 showcase a particularly 
good example of this – in Figure 2, we take full advantage of 
K’s syntax features and can express the full optimization 
problem in a fairly straightforward way. In Figure 3, we 
express only the interpolation constraint (the last constraint 
in Error! Reference source not found.) while restricting 
ourselves to just linear constraints, which is what the GNU 
Linear Programming Kit supports [6]. Expressing just the 
interpolation constraint using only linear constraints takes 
more code than expressing the entire model while making full 
use of K’s features. 

The advantages of this framework go beyond just 
convenience and speed. In Scenarios 3 and 4, we have 
constraints on the value for additional Δv. However, the 
value for additional Δv depends on an interpolated value that 
also circularly depends on the additional Δv itself. We could 
not find a straightforward way to converge on a satisfying 
solution by hand. The K/BAE framework was able to 
successfully find solutions for these scenarios. 

One shortcoming of the current K/BAE framework is the 
inability to generate expressions as the solution for an 
optimization problem. For instance, in the 8-to-6 case, we 
know that the time required for 6 thrusters to operate is a 
function of the time accomplished on 8 thrusters, but the 
K/BAE framework can only solve for point solutions, like the 
minimum and maximum time on 6 thrusters.  When adding 
another variable for delaying the start of the burn to 
investigate Scenarios 6 – 9, the expressions for the time 
bounds become much more complicated, and we decided that 
it would be too difficult to use the BAE to obtain the 
expressions. such that we could not simply transform the 
bound values into expressions.  Continuing with the BAE 
would require software development for which did not plan.  

//MINIMIZE 
var y0 : Int 
var y12 : Int 
var y24 : Int 
var y72 : Int 
 
req 99999 * y0 - delayT >= 0 
req 99999 * y12 - delayT >= - 12 
req 99999 * y24 - delayT >= - 24 
req 99999 * y72 - delayT >= - 72 
 
//MAXIMIZE 
var y0_12 : Int 
req y0_12 - y0 <= 0 
req y0_12 + y12 <= 1 
 
var y12_24 : Int 
req y12_24 - y12 <= 0 
req y12_24 + y24 <= 1 
 
var y24_72 : Int 
req y24_72 - y24 <= 0 
req y24_72 + y72 <= 1 
 
//MINIMIZE 
var slope : Real 
var z0_12 : Int 
req 99999 * z0_12 - slope + 21.2767 * x <= 0 
req 99999 * z0_12 + slope - 21.2767 * x <= 0 
 
var z12_24 : Int 
req 99999 * z12_24 - slope - 24.4292 * x <= 37.83 
req 99999 * z12_24 + slope + 24.4292 * x <= -37.83 
 
var z24_72 : Int 
req 99999 * z24_72 - slope + 10.2944 * x  <= -301.405 
req 99999 * z24_72 + slope - 10.2944 * x <= 301.405 
 
var x_notin_0_12_or_interp : Int 
2 * x_notin_0_12_or_interp + y0_12 - z0_12 <= 2 
2 * x_notin_0_12_or_interp + y0_12 - z0_12 >= 1 
 
var x_notin_12_24_or_interp : Int 
2 * x_notin_12_24_or_interp + y12_24 - z12_24 <= 2 
2 * x_notin_12_24_or_interp + y12_24 - z12_24 >= 1 
 
var x_notin_24_72_or_interp : Int 
2 * x_notin_24_72_or_interp + y24_72 - z24_72 <= 2 
2 * x_notin_24_72_or_interp + y24_72 - z24_72 >= 1 
 
req additionalDeltaV - slope * (1.0 - completed) = 0.0 
 
// set bounds for binaries used throughout model 
req y0 >= 0 
req y0 <= 1 
req y12 >= 0 
req y12 <= 1 
req y24 >= 0 
req y24 <= 1 
req y72 >= 0 
req y72 <= 1 
 
req y0_12 >= 0 
req y0_12 <= 1 
req y12_24 >= 0 
req y12_24 <= 1 
req y24_72 >= 0 
req y24_72 <= 1 
 
req z0_12 >= 0 
req z0_12 <= 1 
req z12_24 >= 0 
req z12_24 <= 1 
req z24_72 >= 0 
req z24_72 <= 1 
 
req x_notin_0_12_or_interp >= 0 
req x_notin_0_12_or_interp <= 1 
req x_notin_12_24_or_interp >= 0 
req x_notin_12_24_or_interp <= 1 
req x_notin_24_72_or_interp >= 0 
req x_notin_24_72_or_interp <= 1 

Figure 3: Linear interpolation in K using only linear 
constraints. Compare this to the previous solution in 
Figure 2 that took full advantage of K's features and 
achieved this in just one constraint. 
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Therefore, in order to generate these expressions, we 
modeled the problem in Mathematica, using the Reduce 
utility to solve for desired variables.  This approach required 
a preprocessing step which estimated how to sub-divide 
scenarios such that the resulting systems of equations were 
simple enough for Reduce to solve in a feasible time 
frame.  Recombining these smaller solutions yields a 
numerically correct expression, at the cost of being too large 
and complex to yield insight into the problem.  Furthermore, 
initial attempts to automatically simplify the expression 
proved too computationally expensive to be viable. 

Mathematica is able to capture the K model given in a 
straightforward way.  We did not choose to model in 
Mathematica originally since we already had a larger model 
of the spacecraft in K and thought that the expressions for the 
time bounds would be simple, as they are in Scenarios 1 – 4.  
Moreover, K/BAE has language constructs for activities and 
state/resource variables that help specify behavior at a higher 
level.  

6. SUMMARY AND CONCLUSION 
In our attempt to integrate more general behavior modeling 
with existing analytic models supporting probabilistic risk 
analyses, we encountered difficult problems in accounting for 
infinite fault cases in a closed-form calculation.  Part of the 
problem is determining time bounds on when interdependent 
faults can occur in different scenarios, which feed into nested 
integrals for calculating reliability. 

Using the declarative K language based on scenario and 
behavior ontologies with the BAE solver, we are able to solve 
168 optimization problems to obtain nested time integral 
bounds for most of the scenarios of interest.  We validated 
our results against those that we could solve by hand. 

Taking advantage of K’s features gave us simpler and more 
expressive models than those that other optimization toolkits 
would take. We were also able to plug into existing 
documentation tools making it possible to use this framework 
at a high level.  A more detailed model of the spacecraft in K 
is used to determine undervoltage conditions. 

One main limitation of the framework is that it solves for 
values, but we need to solve for expressions. The bounds on 
the amount of time spent on six thrusters actually depends on 
the amount of time spent on eight thrusters, so for the 
integrals, we would want to use these dependent expressions 
for the limits rather than just absolute values (see Appendix 
A).  For more complicated cases (Scenarios 6 – 9), our 
approach was insufficient, but Mathematica was able to 
generate those formulas, although they are very large and 
difficult to manage. 
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APPENDIX  
A.  HAND CALCULATIONS 

We initially hand calculated solutions to Scenarios 1 and 2 
and used these results for validation (Tables 3 and 4, 
respectively).	  

Table 3: Hand calculated time bound values for Scenario 1. 

Case 𝜟𝒕 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒 
8 thrusters throughout 6.5 6.5 0 0 
Switch from 8 to 6 
thrusters 
 

6.5 < 𝛥𝑡 ≤ 7.5 3.5 ≤ 𝛥𝑡[
< 6.5 

4
3
(6.5 − 𝛥𝑡[) 

0 

Switch from 8 to 6 to 4 
thrusters 

6.5 < 𝛥𝑡 ≤ 7.5 
 

3.5 < 𝛥𝑡[
< 6.5 

if 𝛥𝑡[ < 5.5	𝑡ℎ𝑒𝑛 
11 − 2𝛥𝑡[ ≤ 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[) 

 
if 𝛥𝑡[ ≥ 5.5	𝑡ℎ𝑒𝑛 
0 < 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[) 

2 }6.5 − 𝛥𝑡[

−
3
4𝛥𝑡8

~ 

Switch from 8 to 4 
thrusters 

6.5 < 𝛥𝑡 ≤ 7.5 
 

5.5 ≤ 𝛥𝑡[
< 6.5 

0 2(6.5 − 𝛥𝑡[) 

6 thrusters throughout Not possible    
Switch from 6 to 4 
thrusters 

Not possible    

4 thrusters throughout Not possible    
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Table 4: Hand calculated time bound values for Scenario 2. 

Case 𝜟𝒕 𝜟𝒕𝟖 𝜟𝒕𝟔 𝜟𝒕𝟒 
8 thrusters 
throughout 

Not possible    

Switch from 8 to 6 
thrusters 

7.5 < 𝛥𝑡

<
4
3 ⋅ 6.5 

0.62 < 𝛥𝑡[
< 3.5 

4
3
(6.5 − 𝛥𝑡[) 

0 

Switch from 8 to 6 to 
4 thrusters 

7.5 < 𝛥𝑡
< 2 ⋅ 6.5 

0.62 < 𝛥𝑡[
< 5.5 

if 𝛥𝑡[ < 4.54	𝑡ℎ𝑒𝑛 
4.54 ⋅ 2 − 2𝛥𝑡[
≤ 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[) 

if 𝛥𝑡[ ≥ 4.54	𝑡ℎ𝑒𝑛 
0 < 𝛥𝑡8
<
4
3
(6.5 − 𝛥𝑡[) 

2 }6.5 − 𝛥𝑡[ −
3
4𝛥𝑡8

~ 

Switch from 8 to 4 
thrusters 

7.5 < 𝛥𝑡
< 2 ⋅ 6.5 

4.54 < 𝛥𝑡[
< 5.5 

0 2(6.5 − 𝛥𝑡[) 

6 thrusters 
throughout 

Not possible    

Switch from 6 to 4 
thrusters 

Not possible    

4 thrusters 
throughout 

Not possible    
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